Alaska Native Monitoring Needs

Sustaining Arctic Observing Networks Workshop

Stockholm, Sweden
November 12-14, 2007

Presented by: James E. Berner MD
Senior Director for Science
Division of Community Health Services
Alaska Native Tribal Health Consortium
Anchorage, Alaska 99508
Alaska Native Monitoring Needs

Population Demographics

Background

• Alaska Native population is 125,000, this represents 19% of Alaska’s population, the highest Native American population percentage of any State

• Approximately 65% rural, 35% urban, 58% in villages of 200 or less

• Most of the rural communities have no road connection with major population centers
NOTE: American Indian/Alaska Native alone or in combination with one or more of the other five races.

Alaska Native Monitoring Needs

Major Health Challenges

• Health status disparities (cancer, injuries, infectious disease, suicide)
• Climate change
• Subsistence food safety/contaminants
• Cultural/economic stress
Alaska Native Monitoring Needs

Climate Change

• The climate is changing rapidly in the Arctic regions of the northern hemisphere and more of the warming is in winter than summer

• Some regions are cooling

(ANNUAL, °C)

The colors indicate the change in temperature from 1954 to 2003. The map indicates annual average temperature change, which ranges from a 2–3°C warming in Alaska and Siberia to a cooling of up to 1°C in southern Greenland.


(WINTER: Dec–Feb in °C)

This map indicates the temperature change during the winter months, ranging from a warming of up to 4°C in Siberia and Northwest Canada to a cooling of 1°C over southern Greenland.
Arctic warming and its consequences have worldwide implications.

The purple line shows departures from the long-term average of annual Eurasian river discharge, and the blue line shows changes in global average surface air temperature.
Global Ocean Circulation

Changes in global ocean circulation can lead to abrupt climate change. Such change can be initiated by increases in arctic precipitation and river runoff, and the melting of arctic snow and ice, because these lead to reduced salinity of ocean waters in the North Atlantic.
Alaska Subsistence Food Harvest

Harvest of subsistence food, small and mid-size communities, Alaska, kg/person/year

- Birds
- Plants
- Terrestrial mammals
- Marine mammals
- Fish
- Shellfish

[Bar chart showing the harvest of various food sources across different regions in Alaska, with Alaskan communities indicated on a small map at the bottom.]
Alaska Native Monitoring Needs

Subsistence Food Safety

• Rural Alaska Natives are the most subsistence dependent population in the US
• Accumulation of organic contaminants in the food web biomagnifies; the developing fetus and pregnant women are most sensitive
• Transport of contaminants by ocean, river, and atmospheric mechanisms may be increased by a warming climate
Alaska Native Monitoring Needs

Contaminant Transport

Subsistence Food Safety

- Global air currents are hemispheric
- Ocean currents are global
- All local sources are eventually distributed globally
- Warming Arctic Climate may be increasing transport from lower latitudes to the Arctic
Alaska Native Monitoring Needs

Subsistence Food Safety

Toxicological Effects

- Growth, neurologic development
- Endocrine disruption
- Immunologic effects
- Adult chronic disease
Alaska Native Monitoring Needs

Climate Change

Zoonotic Disease

“Volatility of infectious diseases may be one of the earliest biologic expressions of climate instability.”

Epstein. Scientific Am. 2000; 283 (2) 50-57
Alaska Native Monitoring Needs

Climate Change

Zoonotic Disease
• Climate warming has resulted in north ward spread of zoonotic diseases
• West Nile Virus is steadily extending northward into cold regions
The West Nile encephalitis virus is a recent example of how far and fast a disease can spread once it becomes established in a new region. The West Nile virus can infect many bird and mammal species (including humans) and is transmitted by mosquitoes. It was first identified on the East Coast of North America in 1999 and spread to 43 states and six Canadian provinces by 2002. Migratory birds are responsible for its spread to other regions. Mosquitoes spread the virus to other birds (as well as to other animals and humans) within a region. Although the virus originated in tropical Africa, it has adapted to many North American mosquitoes, and so far, to over 110 species of North American bird, some of which migrate to the Arctic. Mosquito species known to transmit the virus are also found in the Arctic. Climate has historically limited the range of some insect-borne diseases, but climate change and adaptive disease agents such as the West Nile virus tend to favor continued northerly expansion. Some arctic regions, such as the State of Alaska, have initiated West Nile virus surveillance programs.
Alaska Native Monitoring Needs
Climate Change

- Damage Destruction of Structures
- Cost to Move Housing Out of Harms Way
- Increased Costs for Repairs
Alaska Native Monitoring Needs

Rural Alaska Monitoring Program (RAMP)

Purpose

• To Detect emerging threats to community health and sustainability
• To empower communities to develop a useful response to Arctic warming
• To identify potential threats and develop mitigation and adaptation strategies
• To form regional and international networks to enable governments to develop and advocate for mitigation and adaptation policies
Alaska Native Monitoring Needs

Rural Alaska Monitoring Program

Components

Core indicators shared by all communities
- Human health indicators
- Ecosystem indicators, for example, zoonotic and wildlife diseases, changes in prevalence of species
- Physical environment indicators, for example, permafrost temperature, shoreline changes, climate indicators

Community-specific indicators
- Contaminant levels in wildlife